Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 268: 116285, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428273

RESUMEN

Biological studies on the endocannabinoid system (ECS) have suggested that monoacylglycerol lipase (MAGL), an essential enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), is a novel target for developing antidepressants. A decrease of 2-AG levels in the hippocampus of the brain has been observed in depressive-like models induced by chronic stress. Herein, employing a structure-based approach, we designed and synthesized a new class of (piperazine-1-carbonyl) quinolin-2(1H)-one derivatives as potent, reversible and selective MAGL inhibitors. And detailed structure-activity relationships (SAR) studies were discussed. Compound 27 (IC50 = 10.3 nM) exhibited high bioavailability (92.7%) and 2-AG elevation effect in vivo. Additionally, compound 27 exerted rapid antidepressant effects caused by chronic restraint stress (CRS) and didn't show signs of addictive properties in the conditioned place preference (CPP) assays. Our study is the first to report that reversible MAGL inhibitors can treat chronic stress-induced depression effectively, which may provide a new potential therapeutic strategy for the discovery of an original class of safe, rapid antidepressant drugs.


Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Monoacilglicerol Lipasas/metabolismo , Depresión/tratamiento farmacológico , Monoglicéridos , Relación Estructura-Actividad , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Endocannabinoides
2.
Bioorg Chem ; 144: 107092, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38271825

RESUMEN

KRAS is the most frequently mutated oncogene and drives the development and progression of malignancies, most notably non-small cell lung cancer (NSCLS), pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). However, KRAS proteins have maintained the reputation of being "undruggable" due to the lack of suitable deep pockets on its surface. One major milestone for KRAS inhibition was the discovery of the covalent inhibitors bond to the allosteric switch-II pocket of the KRASG12C protein. To date, the FDA has approved two KRASG12C inhibitors, sotorasib and adagrasib, for the treatment of patients with KRASG12C-driven cancers. Researchers have paid close attention to the development of inhibitors for other KRAS mutations and upstream regulatory factors. The KRAS targeted drug discovery has entered a state of rapid development. This article has aimed to present the current state of the art of drug development in the KRAS field. We systematically summarize recent advances in the discovery and optimization processes of direct KRAS inhibitors (including KRASG12C, KRASG12D, KRASG12A and KRASG12R inhibitors), indirect KRAS inhibitors (SOS1 and SHP2 inhibitors), pan-KRAS inhibitors, as well as proteolysis-targetingchimeras degrades and molecular chaperone modulators from the perspective of medicinal chemistry. We also discuss the current challenges and opportunities of KRAS inhibition and hope to shed light on future KRAS drug discovery.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Química Farmacéutica , Proteínas Proto-Oncogénicas p21(ras)/genética , Desarrollo de Medicamentos , Mutación
3.
Front Pharmacol ; 14: 1143785, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026986

RESUMEN

Background: Scutellaria amoena (SA) is the root of S. amoena C.H. Wright of Labiatae, also known as Scutellaria southwestern. This is mainly distributed in Sichuan, Yunnan, and Guizhou in China. In southwest China, SA is used as an alternative method to genuine medicine for the treatment of allergy, diarrhea, inflammation, hepatitis, and bronchitis. Thus far, studies on the effects of SA on non-alcoholic steatohepatitis (NASH) are lacking. This paper investigated the effect of SA on the regulation of gut microbiota and its metabolites in NASH rats by inhibiting the NOD-like receptor 3 (NLRP3)/apoptosis-associated speck-like protein (ASC)/caspase-1 axis. Methods: A NASH rat model was induced by a high-fat diet (HFD) for 12 weeks, and rats were orally given different doses of SA extracts (150 and 300 mg/kg/d) for 6 weeks. Changes in histological parameters, body weight, organ indexes, cytokines, and biochemical parameters related to NLRP3 in NASH rats were checked. 16S rRNA gene sequencing and UPLC-MS/MS technology were used to analyze the changes in the gut microbiota composition and its metabolites in NASH rats. Results: SA significantly inhibited the HFD-induced increase in body weight, lipid levels, and inflammatory infiltration. SA notably inhibited the HFD-induced increase in the upper and lower factors of NLRP3, such as transforming growth factor (TGF)-ß, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-18, pro-IL-18, IL-1ß, pro-IL-1ß, NLRP3, ASC, and caspase-1. Additionally, mRNA expressions of caspase-1, NLRP3, and ASC were significantly downregulated after SA treatment. The results of the intestinal flora showed that SA could increase the diversity of flora and change its structure and composition in NASH rats by reducing Firmicutes/Bacteroidetes (F/B) ratio, Blautia (genus), Lachospiraceae (family), and Christensenellaceae R-7 group (genus), and increasing Muribaculaceae (family) and Bacteroides (genus). The metabolomics revealed that 24 metabolites were possibly the key metabolites for SA to regulate the metabolic balance of NASH rats, including chenodeoxycholic acid, xanthine, and 9-OxoODE. Nine metabolic pathways were identified, including primary bile acid biosynthesis, bile secretion, purine metabolism, and secondary bile acid biosynthesis. Conclusion: SA can regulate the intestinal microbial balance and metabolic disorder by inhibiting the NLRP3/ASC/caspase-1 axis to relieve NASH.

4.
Chemistry ; 29(39): e202301156, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37129930

RESUMEN

Artificial dissipative networks have emerged as advanced bionic systems for the development of material technology and synthetic biology. Here, a DNA-based artificial dissipation system is demonstrated that synchronizes multiple energy-rich molecules (fuels) including oligonucleotide, dNTP, and ATP. The autonomous operation of the dissipation system relies on the integration of DNA reaction network including polymerase extension, kinase phosphorylation, and exonuclease digestion. The use of multiple fuels provides multiple transient states with different energy levels and fine-tuning dissipative kinetics. The lifetime of the transient state can be programmed to increase or decrease just by varying one of the fuel molecules unlike conventional DNA-based dissipative systems where the increase in the concentration of fuel molecule extends the lifetime. This design greatly expands the toolkits for establishing dissipative/dynamic DNA networks. The dissipation system is harnessed to dynamically regulate the assembly of DNA nanotubes allowing for controlling the assembly kinetics by multiple fuels. Owing to the multiple transient states in the dissipation system, two nanotubes can be regulated in parallel. It is envisioned that the system will find broad application in responsive materials, soft robotics, biosensors, and on-demand drug delivery.


Asunto(s)
Nanotubos , Fenómenos Físicos , ADN , Adenosina Trifosfato , Cinética
5.
J Ethnopharmacol ; 305: 116145, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36623753

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tylophora yunnanensis Schltr (TYS) is widely distributed in Yunnan, Guizhou, and other places in China. It is commonly used by folks to treat hepatitis and other liver-related diseases; however, its mechanism of action is still unclear. AIM OF THE STUDY: This study aimed to determine the effects of TYS on regulating gut microbiota and its metabolites in non-alcoholic steatohepatitis (NASH) rats by inhibiting the activation of NOD-like receptor protein3 (NLRP3). MATERIAL AND METHODS: An HFD-induced rat model was established to investigate if the intragastric administration of TYS could mediate gut microbiota and their metabolites to ultimately improve the symptoms of NASH. The improving effects of TYS on NASH rats were assessed by measuring their body weight, lipid levels, histopathology, and inflammatory factor levels in the rat models. The regulatory effects of TYS on NLRP3 in the NASH rats were analyzed using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), which determined the levels of NLRP3-related factors. The changes in the composition of the gut microbiota of NASH rats were analyzed using 16S rRNA gene sequencing technology. Meanwhile, the Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for the non-targeted analysis of metabolites in the cecum contents. RESULTS: The results showed that TYS could improve NASH by decreasing the body weight and levels of lipid, AST, ALT, LPS, FFA, VLDL, IL-1ß, IL-6, TNF-α, TGF-ß, NLRP3, ASC, and Caspase-1 in the NASH rats. The analysis of gut microbiota showed that TYS could improve the diversity and abundance of gut microbiota and alter their composition by decreasing the Firmicutes/Bacteroidetes (F/B) ratio and relative abundances of Lachnospiraceae, Christensenellaceae, Blautia, etc. while increasing those of Muribaculaceae, Rumiaococcus, Ruminococcaceae, etc. The analysis of metabolites in the cecum contents suggested that the arachidonic acid metabolism, bile secretion, serotonergic synapse, Fc epsilon RI signaling pathway, etc. were regulated by TYS. The metabolites enriched in these pathways mainly included chenodeoxycholic acid, prostaglandin D2, TXB2, 9-OxoODE, and 13(S)-HOTrE. CONCLUSIONS: These findings suggested that TYS could alleviate the NASH symptoms by decreasing the body weight, regulating the lipid levels, reducing the inflammatory response, and inhibiting the expression levels of NLRP3, ASC, and Caspase-1 in the NASH rats. The changes in the composition of gut microbiota and their metabolic disorder were closely related to the activation of NLRP3. TYS could significantly inhibit the activation of NLRP3 and regulate the composition of gut microbiota and the disorder of metabolites during NASH modeling.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratas , Peso Corporal , Caspasa 1/metabolismo , China , Cromatografía Liquida , Lípidos/farmacología , Hígado/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Ribosómico 16S/metabolismo , Espectrometría de Masas en Tándem , Tylophora/genética
7.
Small ; 18(49): e2205191, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36287076

RESUMEN

DNA-based nanodevices equipped with localized modules have been promising probes for biomarker detection. Such devices heavily rely on the intramolecular hybridization reaction. However, there is a lack of mechanistic insights into this reaction that limits the sensing speed and sensitivity. A coarse-grained model is utilized to simulate the intramolecular hybridization of localized DNA circuits (LDCs) not only optimizing the performance, but also providing mechanistic insights into the hybridization reaction. The simulation guided-LDCs enable the detection of multiple biomarkers with high sensitivity and rapid speed showing good consistency with the simulation. Fluorescence assays demonstrate that the simulation-guided LDC shows an enhanced sensitivity up to 9.3 times higher than that of the same probes without localization. The detection limits of ATP, miRNA, and APE1 reach 0.14 mM, 0.68 pM, and 0.0074 U mL-1 , respectively. The selected LDC is operated in live cells with good success in simultaneously detecting the biomarkers and discriminating between cancer cells and normal cells. LDC is successfully applied to detect the biomarkers in cancer tissues from patients, allowing the discrimination of cancer/adjacent/normal tissues. This work herein presents a design workflow for DNA nanodevices holding great potential for expanding the applications of DNA nanotechnology in diagnostics and therapeutics.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Nanotecnología , ADN , Neoplasias/diagnóstico
8.
Environ Sci Technol ; 56(18): 13398-13407, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36053337

RESUMEN

Massive diagnostic testing has been performed for appropriate screening and identification of COVID-19 cases in the ongoing global pandemic. However, the environmental impacts of COVID-19 diagnostics have been least considered. In this paper, the environmental impacts of the COVID-19 nucleic acid diagnostics were assessed by following a full cradle-to-grave life-cycle approach. The corresponding life-cycle anthology was established to provide quantitative analysis. Moreover, three alternative scenarios, i.e., material substitution, improved waste treatment, and electric vehicle (EV)-based transportation, were further proposed to discuss the potential environmental mitigation and conservation strategies. It was estimated that the life cycle of a single COVID-19 nucleic acid diagnostic test in China would lead to the emission of 612.9 g CO2 equiv global warming potential. Waste treatment, as a step of life cycle, worsen the environmental impacts such as global warming potential, eutrophication, and ecotoxicity. Meanwhile, diesel-driven transportation was considered as the major contributor to particulate air. Even though COVID-19 diagnostics are of the greatest importance to end the pandemic, their environmental impacts should not be ignored. It is suggested that improved approaches for waste treatment, low-carbon transportation, and a reliable pool sampling strategy are critical for the achievement of sustainable and green diagnostics.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Animales , Carbono , Dióxido de Carbono , Conservación de los Recursos Naturales , Estadios del Ciclo de Vida
9.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4084-4088, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046898

RESUMEN

This study aimed to explore the triterpenic acid components in leaves of Ilex hainanensis. Alkaline water extraction, macroporous resin adsorption, and high performance liquid chromatography were used to separate and purify the triterpenic acid components in leaves of I. hainanensis. The physical and chemical property analysis, MS, NMR spectroscopy, and literature comparison were performed to identify the structures, and a new triterpene acid compound was discovered:(3S, 4R, 5R, 8R, 9R, 10R, 14S, 17S, 18S, 19R)-3,19-dihydroxyursa-12,20(30)-diene-24,28-dioic-acid, and named ilexhainanin F. In addition, according to its structural characteristics, the ~(19)F-NMR Mosher method was further employed to study its absolute configuration. By comparison of the ~(19)F-NMR chemical shifts of Mosher esters, it was determined that the absolute configuration of the 3-position chiral center of the compound was the S configuration.


Asunto(s)
Ilex , Triterpenos , Cromatografía Líquida de Alta Presión/métodos , Ilex/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Hojas de la Planta/química , Triterpenos/análisis
10.
Chem Biodivers ; 19(9): e202200363, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934672

RESUMEN

Yi medicine Shekaqi is the most attractive traditional ethnic medicine due to its significant and diverse pharmacological activities. Two novel flavonoids, including 5,2'-dihydroxy-6-methoxy-7-decyloxyflavone and tenaxin II-7-O-ß-D-glucuronopyranosyl acid butyl ester, along with six known flavonoids, were isolated from Yi medicine Shekaqi. Their structures were elucidated based on the analysis of their comprehensive spectral data. The in vitro lipid-lowering activities of the eight compounds showed that all the compounds significantly inhibited the lipopolysaccharide (LPS)-induced increase in the total cholesterol (TC) level, while compounds 1, 4, 6, 7, and 8 significantly inhibited the LPS-induced increase in the triglyceride (TG) level.


Asunto(s)
Flavonoides , Lipopolisacáridos , Colesterol , Ésteres , Flavonoides/química , Flavonoides/farmacología , Lipopolisacáridos/farmacología , Triglicéridos
11.
Biosens Bioelectron ; 215: 114561, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841766

RESUMEN

Abnormal expression of DNA modifying enzymes (DMEs) is linked to a variety of diseases including cancers. It is desirable to develop accurate methods for DME detection. However, the substrate-based probe for target DMEs is disturbed by various non-target DMEs that have similar activity resulting in a loss of specificity. Here we utilized dissipative DNA networks to develop an ultra-specific fluorescence assay for DME, absolutely distinguishing between target and non-target enzymes. Unlike the conventional sensors in which the discrimination of target and non-target relies on signal intensity, in our system, target DMEs exhibit featured fluorescence oscillatory signals, while non-target DMEs show irreversible 'one-way' fluorescence increase. These dissipation-enabled probes (DEPs) exhibit excellent generality for various types of DMEs including DNA repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1), polynucleotide kinase (T4 PNK), and methyltransferase (Dam). DEPs provide a novel quantification mode based on area under curve which is more robust than those intensity-based quantifications. The detection limits of APE1, T4 PNK, and Dam reach 0.025 U/mL, 0.44 U/mL, and 0.113 U/mL, respectively. DEPs can accurately identify their corresponding DMEs with excellent specificity in cell extracts. Fluorescence sensors based on DEPs herein represent a conceptually new class of methods for enzyme detection, which can be easily adapted to other sensing platforms such as electrochemical sensors.


Asunto(s)
Bacteriófago T4 , Técnicas Biosensibles , Técnicas Biosensibles/métodos , ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Espectrometría de Fluorescencia/métodos
12.
Trials ; 23(1): 294, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413886

RESUMEN

BACKGROUND: Sepsis and continuous renal replacement therapy (CRRT) are both responsible for the alterations of the pharmacokinetics of antibiotics. For patients with sepsis receiving CRRT, the serum concentrations of meropenem in the early phase (< 48 h) was significantly lower than that in the late phase (> 48 h). This current trial aimed to investigate whether administration of a loading dose of meropenem results in a more likely achievement of the pharmacokinetic (PK)/pharmacodynamics (PD) target (100% fT > 4 × MIC) and better therapeutic results in the patients with sepsis receiving CRRT. METHODS: This is a single-blinded, single-center, randomized, controlled, two-arm, and parallel-group trial. This trial will be carried out in Guangzhou First People's Hospital, School of Medicine, South China University of Technology Guangdong, China. Adult patients (age ≥ 18 years) with critical sepsis or sepsis-related shock receiving CRRT will be included in the study. The subjects will be assigned to the control group and the intervention group (LD group) randomly at a 1:1 ratio, the estimated sample size should be 120 subjects in each group. In the LD group, the patient will receive a loading dose of 1.5-g meropenem resolved in 30-ml saline which is given via central line for 30 min. Afterward, 0.75-g meropenem will be given immediately for 30 min every 8 h. In the control group, the patient will receive 0.75-g meropenem for 30 min every 8 h. The primary objective is the probabilities of PK/PD target (100% fT > 4 × MIC) achieved in the septic patients who receive CRRT in the first 48 h. Secondary objectives include clinical cure rate, bacterial clearance rate, sepsis-related mortality and all-cause mortality, the total dose of meropenem, duration of meropenem treatment, duration of CRRT, Sequential Organ Failure Assessment (SOFA), C-reactive protein levels, procalcitonin levels, white blood cell count, and safety. DISCUSSION: This trial will assess for the first time whether administration of a loading dose of meropenem results in a more likely achievement of the PK/PD target and better therapeutic results in the patients with sepsis receiving CRRT. Since CRRT is an important therapeutic strategy for sepsis patients with hemodynamic instability, the results from this trial may help to provide evidence-based therapy for septic patients receiving CRRT. TRIAL REGISTRATION: Chinese Clinical Trials Registry, ChiCTR2000032865 . Registered on 13 May 2020, http://www.chictr.org.cn/showproj.aspx?proj=53616 .


Asunto(s)
Sepsis , Choque Séptico , Adolescente , Adulto , Antibacterianos , Enfermedad Crítica , Humanos , Meropenem/efectos adversos , Meropenem/farmacocinética , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Sepsis/diagnóstico , Sepsis/tratamiento farmacológico , Choque Séptico/diagnóstico , Choque Séptico/tratamiento farmacológico
13.
Small ; 18(20): e2108008, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35254723

RESUMEN

Cancer diagnosis and therapeutics (theranostics) based on the tumor microenvironment (TME) and biomarkers has been an emerging approach for precision medicine. DNA nanotechnology dynamically controls the self-assembly of DNA molecules at the nanometer scale to construct intelligent DNA chemical reaction systems. The DNA logic circuit is a particularly emerging approach for computing within the DNA chemical systems. DNA logic circuits can sensitively respond to tumor-specific markers and the TME through logic operations and signal amplification, to generate detectable signals or to release anti-cancer agents. In this review, the fundamental concepts of DNA logic circuits are clarified, the basic modules in the circuit are summarized, and how this advanced nano-assembly circuit responds to tumor-related molecules, how to perform logic operations, to realize signal amplification, and selectively release drugs through discussing over 30 application examples, are demonstrated. This review shows that DNA logic circuits have powerful logic judgment and signal amplification functions in improving the specificity and sensitivity of cancer diagnosis and making cancer treatment controllable. In the future, researchers are expected to overcome the existing shortcomings of DNA logic circuits and design smarter DNA devices with better biocompatibility and stability, which will further promote the development of cancer theranostics.


Asunto(s)
Computadores Moleculares , Neoplasias , ADN/química , Humanos , Lógica , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisión , Microambiente Tumoral
14.
Int J Radiat Oncol Biol Phys ; 113(1): 101-113, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074433

RESUMEN

PURPOSE: We hypothesized that diffusion-weighted magnetic resonance imaging (DWI)-guided dose-painting intensity modulated radiation therapy (DP-IMRT) is associated with improved local tumor control and survival in locoregionally advanced nasopharyngeal carcinoma (NPC). The purpose of this randomized study was to compare the efficacy and toxicity of DWI-guided DP-IMRT to conventional magnetic resonance imaging (MRI)-based IMRT in locoregional advanced NPC. METHODS AND MATERIALS: A total of 260 patients with stage III-IVa NPC disease were randomly assigned in a 1:1 ratio to receive induction chemotherapy followed by chemoradiotherapy by DWI-guided DP-IMRT (group A, n = 130) or conventional MRI-based IMRT (group B, n = 130) in this prospective clinical trial. In group A, subvolume GTVnx-DWI (gross tumor volume of nasopharynx in DWI) was defined as the areas within the GTVnx (gross tumor volume of nasopharynx) with an apparent diffusion coefficient (ADC) below the mean ADC (ADC < mean) according to MRI before induction chemotherapy. The dose to GTVnx-DWI was escalated to 75.2 Gy/32 fx in patients with T1-2 disease and to 77.55 Gy/33 fx in those with T3-4 disease in 2.35 Gy per fraction. In group B, planning gross tumor volume of nasopharynx was irradiated at 70.4 to 72.6 Gy/32 to 33 fx in 2.2 Gy per fraction. This trial is registered with chictr.org.cn (ChiCTR1800015779). RESULTS: A total of 260 patients were included in the trial (130 patients in group A and 130 in group B). Complete response rates after chemoradiotherapy were 99.2% (129 of 130) and 93.8% (122 of 130) in groups A and B, respectively (P = .042). At a median follow-up of 25 months, DWI-guided DP-IMRT was associated with improved 2-year disease-free survival (DFS; 93.6% [95% confidence interval {CI}, 88.1%-99.1%] vs 87.5% [95% CI, 81.4%-93.6%], P = .015), local recurrence-free survival (100% [95% CI, not applicable {NA}] vs 91.3% [95% CI, 85.4%-97.2%]), locoregional recurrence-free survival (LRRFS; 95.8% [95% CI, NA] vs 91.3% [95% CI, 85.4%-97.2%]), distant metastasis-free survival (DMFS; 97.8% [95% CI, NA] vs 90.9% [95% CI, 85.8%-96.0%]), and overall survival (100% [95% CI, NA] vs 94.5% [95% CI, 89.2%-99.8%]). Zero and 3 patients had local-only recurrences in group A and B, respectively. The most common site of first failure in each arm was distant organ failure. No statistically significant differences in acute and late toxic effects were observed. Multivariate analyses showed that DP (DWI-guided DP-IMRT vs conventional MRI-based IMRT without DP) was associated with DFS, local recurrence-free survival, LRRFS, and distant metastasis-free survival. Epstein-Barr virus DNA level was associated with DFS and LRRFS. CONCLUSIONS: DWI-guided DP-IMRT plus chemotherapy is associated with a disease-free survival benefit compared with conventional MRI-based IMRT among patients with locoregionally advanced NPC without increasing acute toxic effects.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia/métodos , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Infecciones por Virus de Epstein-Barr/etiología , Herpesvirus Humano 4 , Humanos , Quimioterapia de Inducción/efectos adversos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/terapia , Radioterapia de Intensidad Modulada/métodos
15.
Front Oncol ; 11: 709622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497763

RESUMEN

INTRODUCTION: An optimal approach to define tumor volume in locoregionally advanced nasopharyngeal carcinoma (NPC) using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) remains unclear. This retrospective study aimed at comparing the outcomes and toxicities of different FDG-PET/CT-guided techniques for primary tumor volume delineation in locoregionally advanced NPC. METHODS: From August 2015 to February 2018, 292 patients with stage III-IVB NPC received FDG-PET/CT-guided IMRT. Three PET/CT-based techniques were used to determine the gross tumor volume (GTV) as follows: visual criteria (group A; n = 98), a standard uptake value (SUV) threshold of 2.5 (group B; n = 95), and a threshold of 50% maximal intensity (group C, n = 99) combined with a dose-painting technique. RESULTS: In groups A, B, and C, the 5-year LRFS rates were 89.4%, 90.0%, and 97.8%, respectively (p = 0.043). The 5-year DMFS rates were 75.1%, 76.0%, and 87.7%, respectively (p = 0.043). The 5-year DFS rates were 70.9%, 70.3%, and 82.2%, respectively (p = 0.048). The 5-year OS rates were 73.5%, 73.9%, and 84.9%, respectively (p = 0.038). Group C showed significantly higher 5-year LRFS, LRRFS, DMFS, DFS, and OS than those in groups A and B (p < 0.05). No statistically significant differences were observed between the three study groups in the cumulative incidences of grade 3-4 acute and late toxicities. Multivariate analyses showed that the PET/CT-guided technique for target volume delineation was an independent prognostic factor for 5-year LRFS, DFS, DMFS, and OS (p = 0.039, p = 0.030, p = 0.035 and p = 0.028, respectively), and was marginally significant in predicting LRRFS (p = 0.080). CONCLUSIONS: The 50% SUVmax threshold regimen for GTV delineation with dose-painting appeared to be superior to the visual criteria or SUV2.5 threshold in locoregionally advanced NPC, and there was no increased toxicity.

16.
Front Oncol ; 11: 619599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33659217

RESUMEN

BACKGROUND: The purpose of this retrospective analysis was to build and validate nomograms to predict the cancer-specific survival (CSS) and overall survival (OS) of head and neck neuroendocrine carcinoma (HNNEC) patients. METHODS: A total of 493 HNNEC patients were selected from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015, and 74 HNNEC patients were collected from the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital (HCH) between 2008 and 2020. Patients from SEER were randomly assigned into training (N=345) and internal validation (N=148) groups, and the independent data group (N=74) from HCH was used for external validation. Independent prognostic factors were collected using an input method in a Cox regression model, and they were then included in nomograms to predict 3-, 5-, and 10-year CSS and OS rates of HNNEC patients. Finally, we evaluated the internal and external validity of the nomograms using the consistency index, while assessing their prediction accuracy using calibration curves. A receiver operating curve (ROC) was also used to measure the performance of the survival models. RESULTS: The 3-, 5-, and 10-year nomograms of this analysis demonstrated that M classification had the largest influence on CSS and OS of HNNEC, followed by the AJCC stage, N stage, age at diagnosis, sex/gender, radiation therapy, and marital status. The training validation C-indexes for the CSS and OS models were 0.739 and 0.713, respectively. Those for the internal validation group were 0.726 and 0.703, respectively, and for the external validation group were 0.765 and 0.709, respectively. The area under the ROC curve (AUC) of 3-, 5-, and 10-year CSS and OS models were 0.81, 0.82, 0.82, and 0.78, 0.81, and 0.82, respectively. The C-indexes were all higher than 0.7, indicating the high accuracy ability of our model's survival prediction. CONCLUSIONS: In this study, prognosis nomograms in HNNEC patients were constructed to predict CSS and OS for the first time. Clinicians can identify patients' survival risk better and help patients understand their survival prognosis for the next 3, 5, and 10 years more clearly by using these nomograms.

17.
Integr Cancer Ther ; 20: 15347354211006179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784875

RESUMEN

PURPOSE: This retrospective study investigated the effects of cognitive behavioral therapy (CBT) on depression, anxiety, response rates, and adverse events in patients with locoregional advanced nasopharyngeal carcinoma (NPC). METHODS: A total of 269 patients with diagnosis of stage III-IVA NPC received either CBT plus chemoradiotherapy (CBT group, n = 136) or treatment as usual (TAU) plus chemoradiotherapy (TAU group, n = 133). Patients in the CBT group received a series of 6 CBT sessions for 6 weeks during concurrent chemoradiotherapy. Depression and anxiety were assessed using the Hospital Anxiety and Depression Scale (HADS) score at baseline, the completion of radiotherapy, and 6, 12, and 24 months after radiotherapy. Response rates and adverse events were also evaluated. RESULTS: Patients in the CBT group showed significantly less depression and anxiety than patients in the TAU group after the completion of radiotherapy (P < .05). Complete response rates were 99.3% (135/136) and 92.5% (123/133) in the CBT group and TAU group with a small effect size (Phi coefficient = .171), respectively (P = .005). Compared with the TAU group, the CBT group showed a significantly lower incidence of acute adverse events and late toxic effects. CONCLUSIONS: The addition of CBT to chemoradiotherapy significantly reduced depressive and anxiety symptoms. CBT combined with chemoradiotherapy is associated with improved response rates, with reduced incidence of toxic effects in patients with locoregional advanced NPC. Based on this study, we registered a randomized controlled clinical trials to better define the role of CBT in patients with locoregional advanced NPC (Registration number: ChiCTR2000034701).


Asunto(s)
Terapia Cognitivo-Conductual , Neoplasias Nasofaríngeas , Ansiedad/etiología , Ansiedad/terapia , Quimioradioterapia/efectos adversos , Depresión/etiología , Depresión/terapia , Humanos , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Estudios Retrospectivos
18.
Nanoscale ; 12(13): 6964-6970, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195488

RESUMEN

Toehold-mediated strand displacement (TMSD) as an important player in DNA nanotechnology has been widely utilized for engineering non-enzymatic molecular circuits. However, these circuits suffer from uncontrollable leakage and unsatisfactory response speed. We utilized site-specific and sequence-independent nucleases to engineer high- robustness DNA molecular circuits. First, we found that the kinetics of the APE1-catalyzed reaction is highly dependent on substrate stability, allowing for the elimination of asymptotic leakage of DNA split circuits. Second, we obtained strict substrate preference of λ exonuclease (λexo) by optimizing the reaction conditions. Robust single-layer and cascade gates with leak resistance were established by using λ exo. Owing to the remarkably fast kinetics of these nucleases, all the circuits yield a high speed of computation. Compared to TMSD-based approaches, nuclease-powered circuits render advanced features such as leakage resistance, hundreds of times higher speed, and simplified structures, representing a class of promising artificial molecule systems.


Asunto(s)
Bacteriófago lambda/enzimología , Computadores Moleculares , ADN/química , Exonucleasas/química , Proteasas Virales/química , Cinética
19.
Nanoscale ; 11(3): 1343-1350, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30604811

RESUMEN

The transition of DNA nanomachines from test tubes to living cells would realize the ultimate goal of smart therapeutic dynamic DNA nanotechnology. The operation of DNA nanomachines in living cells remains challenging because it is difficult to utilize an endogenous driving force. Inspired by the base excision repair (BER) process, we demonstrate a 'burnt-bridge' DNA motor system powered by intracellular apurinic/apyrimidinic (AP) endonuclease APE1. The high specificity of APE1 to the AP site in double-stranded DNA permits directional and autonomous movement. The advanced single-molecule fluorescence technique was utilized to directly monitor the stepwise movement of the motor strand, confirming the excellent controllability and processivity of this system. The speed of this DNA motor relies highly on APE1 concentration, allowing discrimination by APE1 level against cancer cells and normal cells. Western blot was used to confirm APE1 expression level. Successful operation of the DNA motor in living cells demonstrates that an endogenous enzyme can operate the rationally designed DNA nanostructures in a programmable way, rather than digesting simple molecular probes. This is useful and practicable for broad application, such as for cellular diagnostic tools, gene regulators for DNA repair, and enzyme-mediated drug delivery.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Colorantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Microscopía Fluorescente
20.
Chem Sci ; 10(43): 9922-9927, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32110309

RESUMEN

DNA molecular switches have emerged as a versatile and highly programmable toolbox and are extensively used in sensing, diagnosis, and therapeutics. Toehold mediated strand displacement serves as the core reaction for signal transduction and amplification. However, the severe leakage of this reaction limits the development of scalable and robust circuits. We engineered single-molecule dynamic DNA junctions for developing 'zero-leakage' molecular switches which are responsive to various inputs. Input binding enhances dynamic junctions' stability allowing for the transient binding of fluorescent probes as the output signal. Unlike the conventional intensity-based output, this molecular switch provides remarkably distinguishable kinetics-based outputs permitting ruling out leakage signals at the single-molecule level. The inputs are detected with significant sensitivity without using any amplification step. It is also revealed that the output signal is sensitive to the binding affinity of inputs and their recognition elements making the molecular switch a potential affinity meter. Considering these features, we anticipate that it would find broad applications in large-scale DNA circuits, responsive materials, and biomolecule interaction study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...